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Abstract--A one-dimensional wave model for incompressible flows predicts the transition between 
the stratified and slug flow regimes in pipes. The one-dimensional wave theory contains less empiricism 
than the commonly used Taitel-Dukler model for this transition. The empiricism embodied in the 
Taitel-Dukler analysis leads to the under-prediction of the transition velocity at high gas density in large 
pipes in particular. This paper presents a complete solution methodology for the one-dimensional wave 
approach for this transition and validates the method by comparison with a wide range of flow regime 
data at large pipe diameters, at high gas density and in horizontal or inclined pipes. The analysis is 
extended, by using the method of characteristics, to model wave growth, decay and interaction. Since all 
waves usually propagate downstream we are led to question the Taitel-Dukler model for slug frequency 
and to suggest that the inlet characteristics, including compliance, play a role. 
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1. I N T R O D U C T I O N  

The prediction of flow regime transitions has been studied extensively over the past two decades. 
Knowledge of the flow regime is a necessary prerequisite to hydraulic and thermal calculations. 
Knowing whether the flow regime is stratified or slug is of particular interest to the design and 
operation of gas and oil pipelines. It is necessary to be able to predict the effects of inclination, 
gas density and large pipe diameter for these pipelines. 

Prior to 5 years ago, work on this regime transition was generally at low gas density (with air 
and water near atmospheric pressure) and at small pipe diameters (<0.05 m). Within the past 
5 years, experimental data have become available at test conditions which are more prototypical 
of operating pipelines. This has led to the development of increasingly refined and sophisticated 
methods for the prediction of flow regimes. 

The basis of the model described here for the regime transition between stratified and slug flows 
is the one-dimensional wave theory for two-phase flows. Wave theory is a very powerful technique 
for analyzing unsteady flows and transient response. As applied to the stratified-to-slug flow regime 
transition, the method involves the velocities of: 

• cont inui ty  waves  which represent a relationship between flow rates and phase 
fractions, determined by an equilibrium of forces such as shear stress; and 

• dynamic  waves that depend upon restoring forces, such as gravity, which accelerate 
material through the wave as a result of phase fraction gradients. 

The starting point of the one-dimensional wave theory is to perform a perturbation analysis on 
the unsteady, separated flow equations (modeling the stratified flow regime) and then to study the 
propagation of dynamic and continuity waves in the flow. The flow regime transition is assumed 
to occur when the criterion for a flow instability is satisfied. The transition from stratified to slug 
flow occurs when the squares of the dynamic and continuity wave velocities (c 2 and v~) are equal 
in the model (see section 3). 

Chapter 6 of the textbook by Wallis (1969) presents the derivation of the basic equations. 
That mathematical exercise is not repeated in this paper. This paper first focuses on the practical 
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solution of the equations and the effectiveness of the model in predicting observed trends for a wide 
range of data. 

Various authors, including Ferschneider et al. (1985), Lin & Hanratty (1986) and Wu et al. 
(1987), have presented models extending the one-dimensional wave model method. The problem 
has been approached at several levels. From the most complex to the simplest, these approaches 
range from: 

• compressible flow of the vapor phase; to 
• incompressible flow of both phases; to 
• simplified, incompressible flow of both phases (without friction, but incorporating 

empirical coefficients). 

Compressible f low model 

Wallis (1969) has derived the basic equations for the case with compressible flow. This general 
model can be simplified for the purpose here, as described below. 

Incompressible f low model 

Wu et al. (1987) and Ferschneider et al. (1985) show that the effects of compressibility can be 
satisfactorily neglected in the model for the transport velocities of interest to pipelines, which 
simplifies the solution considerably. [See Wallis (1969, p. 149) for the development of the basic 
equations.] Wu et al. (1987) showed good comparisons with the regime transition data from 
Taitel & Dukler (1976) and their own experiments in the Shell KSLA facility at Bacton, England. 
Using an equivalent approach, but a somewhat different formulation of the model, Ferschneider 
et al. (1985) showed good comparisons over a range of pipe inclinations with flow regime data from 
a test facility located in Boussens, France. 

The approach and basic equations of Wu et al. (1987) for incompressible gas-liquid flow in a 
pipe are used here. This paper provides mathematical details for closure and the solution 
methodology left to the reader in the previous work, so that the flow regime transition can be 
calculated using the equations presented here. 

Incompressible f low model without friction 

The mechanistic analysis proposed by Taitel & Dukler (1976) is widely used for the prediction 
of this flow regime transition. As first pointed out by Ferschneider et al. (1985), the basic 
Taitel-Dukler model is actually an approximation to the more general one-dimensional wave 
analysis. The key assumption is to omit friction in the momentum equations, which generally lowers 
the threshold for the instability. An empirical coefficient, which works best for flow conditions close 
to the original data, is then applied to the result. The simpler Taitel-Dukler model is usually 
adequate for determining the flow regime for pipeline calculations, as long as a factor of 
approximately 2 of uncertainty in the flow rates at the transition does not affect the predicted flow 
regime. The correspondence between the one-dimensional wave model presented here and the 
simplified Taitel-Dukler model is demonstrated further after the equations are presented. 

The equations of the one-dimensional wave model (including the effects of friction) are presented 
first, followed by comparisons with a wide range of experimental data. The advantage of the more 
detailed mechanistic model is improved accuracy in predicting the flow regime transition at high gas 
density and at low gas velocity. The disadvantage is that the model is more complex to implement, 
and its numerical stability under all conditions has not been rigorously demonstrated. 

As with any model, this model has limitations. It deals with the stratified-to-slug transition and 
is less effective for the slug-to-annular transition where the mechanism of the regime change is 
different--blow-through of the gas in the liquid slug. This wave theory is one-dimensional, predicts 
waves growing without limit and fits experimental data. There may be other phenomena to be 
considered if the liquid level is very low, e.g. Jepson et al. (1989). 

When the equations are written in transient form, they can also be used not only to predict 
instability, but also to analyze how the interface will evolve as waves grow. This is an important 
feature of any theory that is to have the potential of predicting slug formation. This paper presents 
examples of waves growing and decaying by this mechanism. 
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Stratified flows that are unstable are usually also supercritical. This implies that both sets of 
dynamic waves propagate downstream and wash out any disturbances. Thus, cyclic slug formation 
is only possible if there is some other mechanism, perhaps associated with the inlet, to initiate 
disturbances at a fixed location. 

2. BASIC EQUATIONS FOR STRATIFIED FLOW 

The basic equations to be solved describe the conservation of mass and momentum for 
one-dimensional stratified motion in the x-direction, along the axis of the pipe. Compressibility 
effects are not included because they give rise to waves of an acoustic nature that travel much more 
rapidly (with speeds of the order of the speed of sound in each phase) than the interfacial waves 
that we will describe. This allows the phases to be treated as essentially incompressible and of a 
uniform density. 

The one-dimensional transient equations of mass and momentum conservation for the gas phase 
illustrated in figure 1 are 

ah ah A~ dUG 
at+u°S-x a~. ax =o [11 

and 

. (aGo ago Oah = aP  woSo  ,Si 
Pc\---~- + UG--~x + g COS ax ) ax A~ AG gpc sin O. [2] 

The nomenclature is the same as that adopted by Taitel & Dukler (1977). P is the interface 
pressure and 

dAL I 
AL= dh =Si '  [3] 

which is the width of the interface between the gas and the liquid. The cross-sectional areas of 
the phases (AL and AG), as well as the perimeter of the phases on the wall and at the interface 
(SL, Sc and Si), are all functions of "h" and the particular geometry of the pipe, which we will 
assume to be circular in cross section; 0 is the inclination of the pipe from the horizontal. 

The corresponding equations for the liquid are 

and 

Oh Oh A L ~ U  L 
dt + UL ~x -I A~. ax = 0 [4] 

/'aUL aUL Oh) + UL%- +g cos0F  = 

Equilibrium solution 

aP "~WL SL "ciS i 
ax AL l- ~ -- gPL sin 0. [5] 

The steady-state equilibrium solution for holdup in a stratified flow is obtained by equating all 
the differentials in [2] and [5] to zero and eliminating P. The result is a single equation which can 

MF 18/2---43 

Ua , ---aS ~ | 

f ~--/'r, 

Figure 1. Nomenclature for gas-liquid stratified flow. 
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be solved for the liquid level or holdup, if the shear stresses are expressed in terms of known friction 
factors: 

F UwLPL(4) 2S~'LU2S __ UwGPG(4) 2gGU2S 
2D.~ 3 2D.~ 3 

.T_fpo S~ f U~ s 2ULsUos 
- -  ~ ~ - 2 - - - ' ~  - -  

\ , IL . ,~  G ~ca L.,~. G 
+ AL-~-L~C/ + g(PL - p~)(sin O) = O. [6] 

The terms in this equation are functions of the liquid level (or liquid fraction) and the super- 
ficial phase velocities (ULs and Uos). The sign on the third term is negative if UG > UL and 
positive if UL > U~. The dimensionless geometric parameters in [6] are also functions of the 
liquid level: 

Z~L = ~ = I {g  __ COS ~(2h* - 1) + (2h* - 1)[1 - (2h* - 1)2]°5}, [71 

AG 1 AG =~-~ =~ {cos-l(2h * -  1 ) -  ( 2 h * -  1)[1 - ( 2 h * -  1)2]°s}, [81 

SL 
SL = ~ = [n -- cos-'(2h* - 1)1, [9] 

SG 
So = 5 = [cos- '(2h* - 1)] [lO] 

and 

~ Si Si = ~ = [1 - (2h* - 1)2] °'5, [111 

where h* is the dimensionless liquid level (h/D). AL and .,I~ are the dimensionless cross- 
sectional areas of the pipe occupied by the liquid and gas phases. SL, Sc and g~ are the dimen- 
sionless perimeters of the wall-liquid interface, gas-wall interface and gas-liquid interface, 
respectively. 

Equation [6] incorporates the shear relationships as follows: 

fwLPL U~ [12] 
TWL = 2 ' 

if the liquid flow is restricted to positive values (no counter flow), 

fwo pc U~ 
Zwo = 2 [131 

and 

f p c ( U c -  UL)I(UG- UL)[ [14] 
"t'i = 2 ' 

where TWL, ZwG and ~i are the shear stresses at the wall-liquid, wall-gas and gas-liquid interfaces, 
respectively. Note that the velocity difference (Uc - UL) is used in the interfacial shear term in [14]. 
Sometimes U G can simply be used, neglecting the liquid velocity if UG ,> UL. Since the flow regime 
transition is not very sensitive to the selection of the friction factors, constant friction factors have 
been used in [6], e.g. 

fWL =fwG = f  = 0.005. 
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Continuity wave velocity 

In order to use the stability criterion developed in Wallis (1969), we need expressions for the 
continuity and dynamic wave velocities. The former may be derived directly from the equilibrium 
condition [6] and is expressed as the difference between the wave velocity and a relative velocity: 

&/=(I/,-- V,). 1151 

The reference velocity V,, (Wallis 1969) is 

v, = P61 

For most cases, this weighted mean velocity has a numerical value which is close to the actual liquid 
velocity UL . 

The general relationship used to derive the wave velocity VW is 

au,, v,= - ( > 86, (4s + 

= 

aF 7l 

-xq ;I ( >o 
(E)-(E)* 

u71 

Wallis (1969) presents the general derivative as a function of liquid fraction, and Wu et al. (1987) 
derive the expanded version of the derivative in terms of the superficial velocities. In this equation, 
the derivatives of the function F in [6] are defined as follows: 

aF 

( > z& 
is the partial derivative of F with respect to JL with the superficial gas 
velocity UC, and the superficial liquid velocity ULs constant. 

aF 

C-J 

is the partial derivative of F with respect to the superficial liquid velocity 

au,, when the liquid level and the superficial gas velocity UGs are constant. 

aF 

C-J 

is the partial derivative of F with respect to the superficial gas velocity when 

JUGS the liquid level and the superficial liquid velocity ULs are constant. 

These derivatives can be calculated either numerically or explicitly. 
Numerical approach. The numerical approach is to evaluate the derivatives by perturbing JL 

(or h*), ULs or UGs by a small amount (say + 1%) in [6]. This approach has the advantage of 
allowing variable friction factors to be used in the model (see section 2). 

Explicit derivatives. Explicit equations for these derivatives have been obtained by differentiating 
[6] (with constant friction factors) to obtain: 

(- UL&2 + &,A”,’ A”,‘), 

() 1 

$ 25,6,3uGS 

D 

T [,pG(,,$i;%~] 
(- ULSAi' 2,’ + &,A”,‘) 

w1 

w1 
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and 

(7 ] _ U 2 
(~_~_F'~ LPL 4 LS l- _3/@_~L, ~ 3SLAL4 ] 
~OALJ--[ ~ JL L LOAL)-- 

Iwtp°(4) 2U~s ,0,t  

p 
• U 2 s  . 4 L '  2 G  3 - -  S i /1  L 2 2 G  3 -I- 3 gi ,zl L- ' .,4 G ̀  

These explicit derivatives are only valid if constant friction factors are assumed. Use the upper sign 
in each if UG > UL and the lower sign if UL > U6 (as in [6]). Equation [20] requires additional 
geometric parameters, defined by 

(£-~-& ~ = t21 ]  
2 

t?AL] [1 - ( 2 h * -  1)21 , 

(~= - t ~ =  ~ t=l OAL] \~AL] [1 -- (2h* -- l) 2] 

and 

( O_~Si "~ 2(2h*-  1) 
[231 

8AL,]= [1-(2h*-1)21 . 

Dynamic wave velocity 
If dP/dx is eliminated from [2] and [5], [1] and [4] may be used to show that the "characteristics" 

of the equation set represent "dynamic waves" (Wallis 1969) traveling at speeds V0 + c, where 

(~_~,(~os_ ~LS~ ~ 
gD(pL--pG)(COSO) \ 4 ]  \ A  G ALJ 

c 2 = [24] 

AL A t  / 

This is the form used in the solution presented in this paper. For reference, the correspondence 
of this relationship with the Taitel-Dukler (1976) analysis is discussed here. As shown by Wu 
et al. (1987), the TaiteI-Dukler (1976) analysis is equivalent to setting c 2= 0 in [24] to obtain 

[ Po l°'S(UGs ULS'] = 4 [ j 3  (1 + Po__~AL ~ ~i-, l°" [25] 
FrG = ApgD-~os O)_j \ AG -- "4L ,] ~ p l a t /  " _1 " 

With the additional assumptions made by Taitel & Dukler (1976) that 

PG '~ PL 

and 

u~ >> u~, 
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[25] simplifies further to 

( pGU~s )0., 4 / ~  ,\°" 
FrG = \ApgD(cosO )_ =-~AGg:£ ) ,  [26] 

which is identical to the transition criterion for a critical gas velocity proposed by Taitel & Dukler 
(1976), if the empirical coefficient (1 - h * )  multiplies the right-hand side. For flow in rectangular 
channels, Wallis & Dobson (1973) suggested a coefficient of about 0.5, which is similar to what 
Kordyban & Ranov (1970) obtained. 

3. TRANSITION CRITERION 

In the Taitel-Dukler (1976) approach, [26] can be solved directly for the critical gas velocity at 
an assumed liquid level h*, i.e. there is no dependence on the liquid velocity UGL. Then [6] can 
be solved to obtain the corresponding liquid velocity. The flow regime transition can be mapped 
by assuming various liquid levels (in the range 0 < h* < 1) in order to obtain the (Uos, ULS) pairs 
which map the flow regime transition. 

An alternative approach, which is consistent with the more complete one-dimensional analysis 
presented here, is based on the criterion that instability results when the continuity waves overtake 
dynamic waves (Wallis 1969); we call this the "one-dimensional wave model". 

Since dynamic waves move with a velocity of + c relative to the weighted mean velocity V0, while 
continuity waves move only in one direction at the velocity Vw, the criterion for instability involves 
the squares of the velocities: 

V~w > c 2. [27] 

The stratified-to-slug flow regime transition occurs when the two velocities are equal in [27]. Since 
Vw and c depend upon the liquid fraction and both superficial phase velocities, by [15]-[17] and [24] 
it is not possible to solve explicitly for one parameter in terms of the other two parameters. 
Therefore, an iterative solution procedure is required to find the flow regime transition. 

The iterative procedure to find the flow regime transition by this model is as follows: 

(1) Use the given value of UGs for the flow conditions in the pipe and guess a value 
of the liquid level h* between 0 and 1. For example, start with h* = 0.5. 

(2) Evaluate the geometric parameters ([7]-[11] and [21]-[23]). 
(3) Solve [6] for the superficial liquid velocity ULS at equilibrium conditions, 

i.e. F = 0. Equation [6] can be solved explicitly if constant friction factors 
are assumed; otherwise, an iterative solution should be used. Check if UG > UL. 
If UG > UL, then use upper sign in [6], if not use the lower sign. 

(4) Calculate the dynamic wave velocity e 2 from [24]. 
(5) Calculate the continuity wave velocity v 2 using [15]-[17]. Equations [18]-[20] may 

be used to evaluate [17]. If UG > UL (see Step 3) then use the upper sign, if not 
use the lower. 

(6) Iterate on the guessed value of h* until the squares of the two velocities match. 
Generally, the relationship v 2 < c: will be true if the value of h * is too low, and 
the converse will be true (v~ > e:) if the value of h* is too high. 

Although this solution procedure has been implemented and checked out for many cases, the 
existence of a solution for all possible conditions has not been rigorously proved. 

Sample calculations 
Figure 2 compares the one-dimensional wave model ( ) with the original Taitel-Dukler (1976) 

analysis ( - - - ) .  The conditions for these comparisons and data are the same as for the data upon 
which the Taitel-Dukler analysis is based, namely small-diameter (0.025 m) horizontal pipes 
with flowing air and water at near-atmospheric pressure (Barnea et al. 1980). The smooth- 
pipe correlations for friction factors have been used as recommended in the original model for 
the Taitel-Dukler analysis. As noted in section 2, constant friction factors are used in the 
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Figure 2. Stratified transition for a horizontal 0.025 m dia pipe at low gas density (Barnea et al. 1980). 
, One-dimensional wave model; - - - ,  Taitel-Dukler (1976) model 

one-dimensional wave model. This figure shows that there are only small differences in the predicted 
stratified-to-slug transition between the two modeling approaches for these conditions, 

The equation for the continuity wave velocity [17] has been solved both explicitly (by using 
derivatives of the steady-state equations in [18]-[20]) and also numerically. The numerical result 
was obtained by evaluating the variation in the function F for _ 1% variations in the values of  
the parameters in the derivatives. The results via either approach are negligibly different. 

Figure 3 illustrates example solutions using the one-dimensional wave model. In figure 3, both 
the continuity and dynamic wave velocities are plotted as a function of the superficial liquid velocity 
at various constant values of the superficial gas velocity. The continuity wave velocity ( - - - )  
monotonically increases with increasing superficial liquid velocity, and the wave velocity is greater 
for greater superficial gas velocity. The dynamic wave velocity ( ) may have two values in each 
case. The intersection of the dashed and solid lines for the same gas velocity defines the superficial 
liquid velocity for the solution and hence the locus of the transition as (UGs, ULS) pairs. 

4. C O M P A R I S O N S  WITH FLOW R E G I M E  T R A N S I T I O N  DATA 

Flow regime data have been obtained by various investigators over a wide range of test 
conditions. Table 1 summarizes the conditions of the experiments for which comprehensive 
comparisons with the predictions of  the one-dimensional wave model have been made. Selected 
comparisons are presented here in order to illustrate the parametric effects of  pipe diameter, gas 
density and pipe inclination. 

L o w  gas density 

Figures 2-6 illustrate the effect of  pipe diameters from 0.0254 to 0.30m for common test 
conditions of: 

• air and water; 
• horizontal pipes; and 
• near-atmospheric pressure. 
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Figure 3. Illustration of  wave velocity calculations for the one-dimensional model. 

For the bulk of the flow regime data, especially at UGs > 0.1 m/s, the predictions of the 
stratified-to-slug regime transition with the one-dimensional wave model are within a factor 
of 2 of the observed liquid velocities, even for a very large pipe diameter of 0.3 m (figure 6), 
where the transition tends to be underpredicted by about that much. The calculated transitions also 
lie in close agreement with the Taitel-Dukler (1976) analysis. 

Figure 5 is particularly interesting because of the transition behavior observed at very low gas 
velocity (Ucs < 0.1 m/s). The transition appears to occur at higher liquid velocity, giving a concave 
appearance to the transition locus. The one-dimensional wave model predicts this trend. This trend 
is not predicted by the simpler Taitel-Dukler analysis. As shown below, this trend becomes more 
pronounced at higher gas density. 

Wu et al. (1987) demonstrated that the location of the "cusp" (concave feature) in the 
calculations can be changed if different assumptions are made about the interfacial friction. 
[Compare the Wu et al. (1987) predictions f o r f  = 0.005 and e~ = ew in figure 1 of that reference. 
The parameters ei and ew are the roughness of the interface and the wall, respectively.] Thus, 
additional tuning of the model could improve the comparisons at low velocity. 

High gas density 

Figures 7-10 compare the predicted and experimental transitions for data in horizontal pipes 
at high gas density. Figures 7 and 8 are for the Creare/PRC 0,089 and 0.17 m dia pipes (Crowley 
& Sam 1986; Crowley et al. 1988), figure 9 is for the SINTEF 0.20 m pipe (Bendiksen et al. 1986) 
and figure 10 is for the Boussens 0.15 m pipe (Ferschneider et al. 1985). In these facilities the gas 
density is 15-30 kg/m 3, or about 15-30 times the density of air at atmospheric pressure. The various 
test fluids, including hydrocarbons, water and Freon are noted in table 1. 

Once again, the trend in the data at low gas velocities compares well with the Creare/PRC data 
for 0.09 and 0.17 m pipe sizes in figures 7 and 8. The SINTEF and Boussens data (figures 9 and 
10) do not extend to such low gas velocities as in the Creare/PRC tests. Those data lie in the range 
where the one-dimensional wave model and the Taitel-Dukler (1976) analysis both lie in close 
agreement with the data. The divergence of the data from the Taitel-Dukler analysis at low gas 
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velocity is predicted well by the one-dimensional wave model presented here. This is the range 
where the assumption Uo >> UL in the Taitel-Dukler model is no longer applicable. 

It is interesting to note that the one-dimensional wave model presented here compares well with 
the data at both low and high gas density. See, for example, the comparisons in figures 5 and 8, 
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which are in the same test facility. The one-dimensional wave model predicts the data at both gas 
densities. 

The original Taitel-Dukler (1976) model, with its assumption of a smooth gas-liquid interface 
in [6] ~ - - f * s  or f~/fws -- 1), compares less well at high gas density. This result has, in the past, led 
to the recommendation of increasing the interfacial shear in the model (Crowley & Sam, 1986). 
Figure 8 shows that a factor of 10 increase in the interfacial shear (~i = 10fws or fi/f,s-- 10) is 
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an improvement to the comparison at Uos > 0.1 m/s, but does not fully match the trend in the 
data at lower gas velocity. 

In all subsequent comparisons at high gas density the higher value of interfacial shear 
( f / fwg = 10) is used in the Taitel-Dukler analysis. The original friction factors are used in the 
one-dimensional wave model. 

Pipe inclination 

Figures 11-13 compare the predicted and observed flow regime transitions for downwardly 
inclined pipes. Figure 11 is a comparison with data at low pressure in a small pipe inclined at 
- 1  ° (Barnea et al. 1982). Consistent with the comparisons for a horizontal pipe (figure 1), the 
predictions of the one-dimensional wave model are in close agreement with both the Taitel-Dukler 
(1976) analysis and the data. Figures 12 and 13 are for experimental data at high pressure in large 
pipes at inclinations of -0.057 ° and - 2  ° (Ferschneider et al. 1985; Crowley & Sam 1986). 
The model presented here is satisfactory for these cases as well. Note that the concave feature 
of the transition which is observed with the horizontal pipes is absent in both the data and the 
predictions for downward inclinations. 

Figure 14 presents a flow regime comparison for a pipe inclined upward at 1 ° (Barnea et al. 1980). 
This comparison is again for data at low gas density in a small pipe. Consistent with the results 
at other inclinations (figures 2 and 11), the predictions of the one-dimensional wave model at 
low pressure are similar to the Taitel-Dukler (1976) analysis. Figures 15 and 16 show comparisons 
with flow regime data in large pipes at upward inclinations of 2 ° (Crowley & Sam 1986) and 4 ° 
(Ferschneider et al. 1985) at high gas density. Figure 15 compares the model with the 20 upslope 
data in the Creare/PRC facility at 0.17 m dia. Figure 16 compares the data from the 0.15 m pipe 
at Boussens. The one-dimensional wave model tends to underpredict the size of the stratified region 
somewhat for the upsloping pipes; however, the results are not far from those of the Taitel-Dukler 
(1976) model. 

The figures presented above demonstrate that the one-dimensional wave model provides 
comparisons which are generally comparable with the Taitel-Dukler (1976) model at low gas 
density, small pipe diameter and high gas velocity (Uos>0.1 m/s), For the cases of low gas 
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velocity and high gas density the model presented here is superior to the Taitel-Dukler (1976) 
model. However, one advantage of the simpler Taitel-Dukler model is that the equations have 
well-defined limits, and a solution can always be found reliably. Additional refinement of the 
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one-dimensional wave model may be needed before full understanding of its solution characteristics 
is achieved. 

An interesting feature of the one-dimensional wave model is that, unlike the calculation of 
pressure drop and void fraction in stratified flows, it does not seem to be very sensitive to the 
interfacial shear. During detailed hand checks of the solutions, it was observed that the terms 
containing interfacial shear in the equations for the continuity wave velocity are small relative to 
the liquid shear terms. The interfacial shear does not appear at all in the dynamic wave velocity. 
Thus, the solution-where the two velocities are equal-is not affected very much by the interfacial 
shear between the gas and liquid phases. 

The basic one-dimensional wave analysis also provides a means to analyze the transient 
propagation of waves in flow channels. The remainder of this paper describes that application. 
Information about the frequencies of waves appears in the analysis. Thus, this analysis may also 
have applications in the prediction of slug frequencies and slug lengths, which is also of interest 
to multiphase flow calculations in pipes. 

5. TRANSIENT ANALYSIS 

The criterion developed in section 3 for the stratified-to-slug regime transition defines when 
instability will occur, but does not allow investigation of its consequences. This may be done using 
the "method of characteristics", essentially following waves as they grow, decay or intersect. 
In order to avoid undue complexity, we consider horizontal flow (0 = 0 °) and make the assumption 
that the gas velocity is much larger than the wave speeds of interest, allowing us to drop the time 
derivatives from [1] and [2]. Equation [1] can then be integrated to give the quasi-steady flow 
continuity equation for the gas: 

A G UG = A UGS- [28] 

Equation [28] can now be used to substitute for Uc whenever it appears. Eliminating P from 
[2] and [5] we get 

_ A2A~'~ O U  L O U  L "OWLS L "ciS i ..t_ L ( SG "ci Si ~ 0h PL PG PG U~s A 3 ] + + U L  - -  - -  - -  " 1 -  - -  \ZWG ~ + ~ ) -  [291 
O---X g PL PL - ~  63X pLAL PLAL PL 

We shall denote the right-hand side of [29] by the symbol " f " .  
Equations [4] and [29] represent two equations for h and UL which may be solved by various 

methods. 
A dimensionless formulation may be obtained by choosing D, the pipe diameter, as the 

characteristic length that scales all geometrical parameters such as height, width, area, perimeter 
etc. Dividing [29] by g(PL-  PG)/PL the dimensionless forms of time, velocity and superficial. 
velocity emerge as 

= t [  g(pL -- P6)1'/2, [301 
t* L d 

g PL ],/2, [311 
U~ = U L D( -~._ jOG) 

I ~1/2 [32] j* : ULS gD(PP--L L Po)J 

and 

I ll/2 
[331 
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The resulting dimensionless forms of [4] and [29], where the variables are all now in their 
dimensionless form (with "asterisks" and tildes suppressed on geometry and UL terms for 
convenience), are 

Oh Oh A L OU L 
0t  + UL ~xx + - 7  = 0 [34] AL Ox 

-~x 1 ~---~G AG/ ~ + UL-~-X =:' 

where 

fwLJ~ 2 SL q_fwcj .2 SG 
f =  2 E[ AL 2 E 2AG 

and the volume fractions of the phases 

EL m. 

[35] 

~ifi ( L  l ~Fj~ 2 -- 2(PG ~l/2j~j~ =~ poj~21 
F 2 \AL+TooJL~o \p~/ ELEO ~L~L_J [361 

a r e  

4 
--AL, EO=I--EL. [37] 
/t 

6. STEADY FLOW--DEVELOPING INTERFACE LEVEL 

In steady flow, the time-dependent terms are zero in [34] and [35]. These equations may be solved 
to determine the height of the interface as a function of location. The result resembles the usual 
"backwater curves" for open channel flow and describes surface profiles near the inlet and exit, 
for example. An interesting prediction is the way in which the steady equilibrium depth is 
approached when the inlet conditions are specified. Under some conditions, a continuous change 
in depth is unable to link the inlet to the equilibrium depth, and some new phenomenon must occur, 
such as a change in flow regime. Even if a continuous change in depth is predicted, time-dependent 
instabilities may still occur; they will be analyzed in subsequent sections. 

Removing the O/Ot terms in [34] and [35], we have two equations for dh/dx and dUL/dX. 
Eliminating d UL/dx gives 

dh / 1"2 A t  Jo Tr2AL  
d--x ~1 e~ Ao ~LA--LL)=f" [38] 

The sign of dh/dx depends both on the sign o f f  and the sign of the term in parentheses. When 
the term in parentheses is zero, the flow is "critical". The qualitative behavior is very much 
like that in "open channel flow", with more complicated terms. To provide one interpretation, 
we can rewrite the term in parentheses as 

u[), 

where 

c 2= 1 - ; T - -  , [39] 
EO A G )  

which is the effective wave speed relative to the liquid velocity. Clearly, the effect of the gas flow 
is to reduce the wave speed, and a sufficiently high gas flux will lead to imaginary wave speeds and 
rapid instability, if this has not already happened due to some other mechanism. 

Equation [39] is an approximation to [24], assuming that Pc < PL and Uo >> UL. 

7. METHOD OF CHARACTERISTICS 

The method of characteristics is a standard approach to solving partial differential equations of 
the hyperbolic type (i.e. those with real wave velocities). The technique is to find directions in the 
x-t  plane along which the formulation can be recast as ordinary differential equations. 

MF 18/2--H 
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We start by substituting [39] into [35] and adding 2 times [34]: 

Oh tgh ( A~L ) 8UL ..[_ ~UL ( 
;,~+~ ,~uL + c2 +-Ti-  -~x uL + ;, 

choosing 

[40] becomes 

A ,. J = f; [401 

__ A~ [-0h 0hi  8 U  L c)  8UL c-~LLN++.(UL+C)-~x + ~ -  + (UL _+_ --~X =f.  [421 

The differentials of both h and UL in [42] are along the "characteristic directions", such that 

dx 
d t  = UL + c. [43] 

We may proceed further by defining 

fo " CA'L 
Y = -~L dh. [44] 

When [44] is used, [42] reduces to the compact form 

o r  

d 
dt (UL +_ y) =f ,  [46] 

where the differentiation in [46] is along the corresponding direction defined by [43]. 
The method of characteristics essentially converts the initial partial differential equations into 

ordinary differential equations. The physical interpretation is that "dynamic waves" travel with the 
speed given in [43], propagating the effect of initial and boundary conditions. The network of 
characteristics, or wave paths, in the x-t plane shows how conditions, such as perturbations in 
depth or velocity, influence the conditions at subsequent times. Numerical methods are usually 
needed to obtain solutions. 

It is easily shown that the stability criterion [27] determines whether waves propagating along 
characteristic directions will grow or decay. To illustrate this, we ran several examples in which 
waves of various initial shapes were set up on an equilibrium stratified flow and allowed to 
propagate. Figure 17(a) shows decaying waves while figure 17(b) shows growing waves. The 
difference between the two figures lies in the liquid flow rate. The sets of curves correspond to 
successive shapes of the interface at fixed intervals of the calculation step, corresponding closely 
to constant intervals of time. 

Figure 18 shows more detail of the two "families" of waves described by the two signs in [43]. 
The waves interact and "pass through" each other. The slower-moving waves decay while the 
faster-moving waves are approximately neutrally stable. The fact that both sets of waves move 
downstream indicates that the flow is "supercritical", with UL > C. 

Several checks were run on the method. For example, if the inlet condition was set to be a 
non-equilibrium value of depth, and some form of initial depth variation with x was assumed, the 
solution near the inlet converged to the developing profile that was calculated separately from the 
steady flow result [38]. 

8. SLUG FORMATION AND FREQUENCY 

Our formulation retains the gas inertia term neglected by Taitel & Dukler (1977) and should give 
a fuller description of how waves grow, perhaps eventually to form slugs. The method of 
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Figure 17. Growth and decay of interfacial waves in stratified flow by the method of characteristics. 
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characteristics can be used to follow wave development until c 2 becomes negative, at which time 
a rapid instability sets in and slugs form. 

At first we believed it would be possible to follow the Taitel-Dukler (1977) method, allowing 
the disturbance left behind by one slug as it was accelerated downstream to grow to form the next 
one and so on. However, we soon realized that for supercritical stratified flows (which are usually 
the ones of interest, as Taitel & Dukter mentioned) all disturbances propagate downstream and 
any region of slug formation will eventually wash out of the system. After several numerical 
experiments, we believe the Taitel-Dukler (1977) model to be flawed for this reason. 

Our suspicion is that a proper model for slug frequency must incorporate a description of the 
inlet conditions and compliance. When a new slug forms, it requires additional pressure drop to 
accelerate it. This feeds back to the inlet by acoustic waves in the gas (which can travel upstream) 
and changes the conditions there. This new "disturbance" eventually grows to form a slug and the 
cycle repeats. The method of characteristics can represent this cycle, but assumptions (or a separate 
mechanistic analysis) are needed about the inlet behavior. 
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